
ERDC Task 2 4Q Deliverable

Data Fusion and Processing Design

Document, and Toolkit for Importing the

Nearshore Ocean Data into the Cube

Prepared for

US Army Corps Engineer Research and Development Center (ERDC)

Prepared by

Landry Bernard, Steve Stanic, James Braud, Vishwamithra Sunkara

University of Southern Mississippi

ERDC Task 2 4Q Deliverable

1. Background:
The Gulf coast of Mississippi is marked by a peculiar shallow-water shelf that stretches

offshore for approximately 150 kilometers and has depths of less than 30 meters. Given the

wide-ranging variabilities in Mississippi's offshore and shallow-coastal waters, the Gulf coast

provides a perfect testing ground for unmanned maritime technologies, including sensor

systems and sensor data fusion concepts.

Figure 1.1: Full coverage area of Ocean Cube

To take the advantage of unique characteristics of the Gulf coast of Mississippi, the

University of Southern Mississippi (USM) developed a web accessible interactive marine

data tool 4-D Cube in collaboration with its research partners. USM’s 4-D Cube provides

simulated and observed marine conditions in the Mississippi sound and nearby waters.

Nowcasts and forecasts using high-resolution Navy and NOAA operational models have been

integrated into visualization and interactive tools to describe the 4-D Cube’s operational

environment. The 4-D Cube framework can visualize the ocean conditions that help the

testing, performance, and evaluation of new and emerging unmanned maritime systems.

The 4-D Cube spans an area of 775 square kilometers just south of the Mississippi barrier

islands with depths varying between 3 and 25 meters. The total area covered in 4-D cube is

shown in Figure 1.1. Also shown in the Figure 1.1 is the high resolution near-shore coastal

inset test area (HRTA-1) within the expanded near-shore cube area. Deployed in each HRTA

will be several scalable underwater high-resolution sensor networks (HRSN), advanced

underwater vehicle sensor technologies, and laser Light Detection and Ranging (LIDAR)

systems that will fully characterize the temporal and spatial characteristics of this variable

near-shore coastal test area.

The 4-D cube provides parameter fields and vertical profiles from the hydrodynamic models,

and satellite and field observations. The cube is currently accommodating three widely used

ocean models for visualizing corresponding model data in cube’s web-interface.

ERDC Task 2 4Q Deliverable

Figure 1.2: 4D Ocean Cube Training, Testing and Evaluation Area

The observations data is also collected from several observation nodes deployed at different

locations within the cube area. A schematic of the 4D-Cube area with its observation nodes is

shown in Figure 1.2.

2. Observations Data Fusion and Processing Design:
The 4-D cube shelters several observation nodes to collect oceanographic, meteorological,

and other environmental data. Each observation node may be fitted with various sensors,

allowing for the collection of various types of environmental data at various times. While in-

situ observation nodes collect and transmit data at regular intervals, unmanned vehicles both

surface and underwater vehicles collect the observations data along their path for specific

missions. The data transmission system for each node may also differ. Thus, the collected

data must be processed and organized to make useful data visualization in ocean cube.

Figure 2.1 shows the data ingest of observation nodes to ocean cube server. During the

observation data processing, the observation data is organized in the database as per the

Enhanced Entity Relationship (EER) model shown in Figure 2.2. The observations data

stored in the database is accessible by making corresponding queries to the database. When

users click on a node in the ocean cube web interface, they will be directed to Grafana, a

visualization and analytics web tool to access and download the observations data. As the

capabilities of 4D-cube evolve over time, more features will be added to the ocean cube

interface to make it more efficient.

The deployed observation nodes in 4-D Cube area consist of a wave rider buoy system

(WaveRider), an ocean meteorological buoy (Viking), a Hi-resolution sensor network

(HRSN) and a subsurface ambient noise and CTD mooring along with several unmanned

ERDC Task 2 4Q Deliverable

vehicles. Below we describe each observation node specifications, their data communication

system, data fusion and processing of collected data in the ocean cube server.

Figure 2.1: Observation Nodes Data Ingest to Ocean Cube Architecture

ERDC Task 2 4Q Deliverable

Figure 2.2: Enhanced Entity Relationship (EER) data model

1. Directional WaveRider 4 (DWR4) Buoy:
The DWR4 buoy is equipped with wave sensor and acoustic current meter. It measures waves

height, wave direction, surface current and water temperature. The acoustic current meter

combines a robust measuring principle, Doppler shift, with a mechanical design that avoids

vulnerability. This results in a coherent oceanographic instrument that meets the challenges at

sea. The specifications of the DWR4 buoy are shown in Figure 2.1.1.

The raw data collected by the buoy is stored on the logger flash card (BVA files) and output

through the radio link (HVA files). However, the buoy also outputs processed data through

the radio link or via communication satellite. Processed data are much more compact,

nevertheless they still give a good impression of the sea state. Especially for the limited data

transmission capacity of satellites, the processing and compressing is essential. While the

buoy can transmit the data to the user using several different communication systems, USM’s

ERDC Task 2 4Q Deliverable

Figure 2.1.1: Directional WaveRider 4 Buoy System Specifications

DWR4 buoy uses Iridium-Short Burst Data (SBD) satellite communication system as shown

in Figure 2.1.2. Iridium SBD communicates data via short messages, much the same as GSM

text messages (SMS). Messages originating from the Iridium SBD modem are limited to 340

bytes and messages terminating at the modem are limited to 270 bytes. Iridium SBD

messages follow the Datawell Message Format (DMF).

ERDC Task 2 4Q Deliverable

Figure 2.1.2: DWR4 Iridium-SBD communication

An Iridium modem dedicated to SBD is used in DWR4 buoys. This 9603N SBD modem does

not require a SIM-card. The Iridium SBD service will only use the IMEI number. Iridium

SBD messages follow the Datawell Message Format (DMF), and the message transmission

interval can be set independently for each message. Table 2.1.1 lists the messages that are

available for Iridium SBD. To configure the messages and intervals for Iridium SBD a

configuration message must be sent by email to the buoys SBD modem. The Waves4

software offers a configurator to do so conveniently.

Table 2.1.1: List of DMF messages available for Iridium SBD

The Waves4 software supports the storage, processing, and presentation of received Iridium

SBD emails, as well as composing configuration emails. It can deal with a network of

Waverider buoys equipped with Iridium SBD. Furthermore, the PC does not have to be

permanently on-line or permanently powered since emails will be buffered by the internet

provider. The Waves4 is setup in USM’s ocean cube server to store and process the data

received from the buoy.

DWR4 also has an internal data storage slot. A data logger is standard on the DWR4. Data is

logged on a compact-flash card inserted in a slot in electronics unit. The logger stores the

same data as transmitted over the HF link: raw displacements, calculated (directional)

spectra, wave parameters, system information, etcetera. Logged files (binary) can be

converted into CSV files using the library libdatawell. Apart from data, the logger also keeps

a log of system events in “SYSLOG.TXT”. This is useful for diagnosis. The standard

compact flash card of 512 Mb will hold almost 1 year of data. After that the oldest data is

overwritten. The logger stores all data in the BVA format, Binary Vector format A. BVA data

is the binary equivalent of the HVA data (Hexadecimal Vector format A) as transmitted over

the HF link. BVA data are collected in files containing 4 days of data. The name convention

of the files is “YYYYMMDD.BVA” where YYYY is year, MM is month, and DD is day.

ERDC Task 2 4Q Deliverable

The date refers of the first day of the data in the file. For example, the file “20120305.BVA”

contains data from March 5, 6, 7 and 8 2012. Every new month a new file starts, leaving the

last file of the month with a variable number of days. The logger generates about 462 Mbyte

of BVA data per year. BVA files can be read by Waves4.

As the SBD messages transmitted by DWR4 buoy are collected and run through waves4 in

ocean cube server, the CSV files are generated and stored in the ocean cube server at a

dedicated location. The Waves4 software generates CSV (Comma Separated Value) files that

contain wave data from DWR4 buoy. Table 2.1.2 shows the list of messages defined for the

HVA files. Depending on the type of buoy from the buoy manufacturer Datawell some

messages may not be transmitted. Out of all the CSV message files generated and stored by

the Waves4 in ocean cube server, just 0xFB0, 0xF80, 0xF82 and 0xF25 files are used to

extract the data that is intended to be displayed in 4-D Cube. This extracted data from these

files is pushed into the database and organized in corresponding tables as per the EER model

shown in Figure 2.2. The remaining files are available in server for any future use. Below the

format of files 0xFB0, 0xF80, 0xF82 and 0xF25, and the parameters that are extracted from

these files is described. All CSV messages share a common header as described in Table

2.1.3.

Table 2.1.2: Overview of the defined messages

ERDC Task 2 4Q Deliverable

Table 2.1.3: Format of the common message header

The Timestamp is the timestamp at which the data acquisition for the message started. This

number represents the number of seconds elapsed after 1-1-1970 in UTC time, excluding leap

seconds. The Datastamp is an internal number used to identify the buoy and based on the

combination of Hatch UID and Hull UID.

From the 0xF25 file, the significant wave height (Hs), mean wave period (T1), average wave

period (Tz) and mean wave direction (θp) values are extracted and pushed into the database.

The mean wave direction (θp) is the direction from which the waves arrive. The value 0

corresponds to North, π/2 or 90° with East. All values refer to magnetic North. The format for

the spectral parameter message is shown in Table 2.1.4.

Table 2.1.4: Format of the spectral parameters message.

The GPS location message 0xF80 file contains the current location of the buoy. The format

for the GPS location message is shown in Table 2.1.5. The latitude and longitude location of

the buoy is extracted from this file and is pushed into the corresponding table in the database.

Table 2.1.5: Format of the GPS location message.

The Latitude is the latitude the location. A positive value for the Latitude means the location

is on the northern hemisphere. A negative value for the Latitude means the location is on the

southern hemisphere. The Longitude is the longitude of the location. A positive value for the

Longitude means the location lies east of the Prime Meridian. A negative value for the

Longitude means location lies west of the Prime Meridian.

The message file 0x82 contains the information of the acoustic current meter. The format of

the acoustic current meter message is shown in Table 2.1.6.

ERDC Task 2 4Q Deliverable

Table 2.1.6: Format of the acoustic current meter message.

The Speed is the mean current speed. The Direction to is the mean current direction. Current

direction is defined as direction the water particles are moving towards. The Tw is the

temperature of the water at the sea surface. The mean current speed and direction, and the sea

surface water temperature are the parameters that are extracted from the 0x82 message file.

The message file 0xFB0 contains all the above parameters values as shown in the Table

2.1.7. This message contains a summary of the information of a DWR4 /ACM buoy.

Table 2.1.7: Format of the DWR4 /ACM summary message.

2. The Oceanographic and Meteorology (Viking) Buoy:

ERDC Task 2 4Q Deliverable

The Oceanographic and Meteorology Buoy shown in Figure 2.2.1 is designed to

accommodate the use of many instruments to satisfy the oceanographic researcher's needs.

These instruments, offered as options, are grouped into three main categories:

Optical parameters

- Measurement of the light spectrum level in air and water

- Measurement of the concentration of coloured biological matter dissolved in sea water

Meteorological parameters

- Wind direction and speed

- Atmospheric temperature and humidity

- Atmospheric pressure

Oceanographic parameters

- Water temperature

- Water salinity, density and conductivity

- Measurement of the water flow at many programmable depths

A Viking View software is designed to help the researcher interpret the information from the

buoy. This information is sent to a land station via cellular modem or satellite or a

combination of cellular and Internet. USM’s Viking buoy is set at 1 hour intervals to transmit

data from the buoy to the ocean cube server via Iridium satellite.

Figure 2.2.1: Viking Buoy

The buoy is equipped with a automate profiler including the controller that can determine

automatically if the conditions are good to collect data.

ERDC Task 2 4Q Deliverable

Characteristics:

- Approximated height of 4,57 meters (180 in)

- Approximated diameter of 2 meters (79 in)

- In air weight: around 1100 kg (2425 lbs) (according to installed equipments)

- 2 x batteries

- Solar panels

- Operating temperature

• Water: -2°C to 35°C (28,4°F to 95°F)

• Air: -10°C to 50°C (14°F to 122°F)

- Material:

• Wetter section: SS316 and Titanium

• Air section: Paint Aluminum

• Floater: Medium density UV-stabilized virgin polyethylene

Communication:

- Frequency range

• Cellular: 3G or 4G

• Satellite: 1616 to 1626.5 MHz

- Operating range

• Cellular: Where the signal is available

• Operating fee: Depend on the paid service and the size of the transferred data

• Satellite: Worldwide

• Operating fees: Required paid service (IRIDIUM)

-Link throughput:

• Cellular: 50 mb/s

• Satellite: 4,8 kbps max

The sensors on board the USM's Viking buoy allow it to collect meteorological and

oceanographic data. The Viking buoy can use two methods of communication as shown in

Figure 2.2.2.

ERDC Task 2 4Q Deliverable

 Figure 2.2.2: Overview of the communication and system

The first one is the SBD (Short Burst Data) that is used by the buoy to transmit the collected

data to the main computer. The data packets will be received by the computer that runs the

reception software.

The second one is CSD (Circuit Switched Data) that is used to communicate with the buoy

and enter in menus for any reasons, such as changing some settings.

In satellite mode, normally we set the buoy to take measurements each 30 minutes and send

only the abbreviated data that with a tag [MO]. You can select any information that you want

to be transmitted, but it has a non-negligible cost.

The reception program installed in ocean cube server is responsible for the cellular and

satellite communication setup. Once, the data service is started, it manages satellite and

incoming cellular connection. The data packet is recorded in a dedicated receiving directory

in the ocean cube server. The data packet will be picked up by the analysis program, this

allows receiving data from multiple buoys. If reception services are not running, data will be

waiting at the satellite provider data center until service is running back again and the

provider will retry sending the data. As for the cellular communication, buoy will hold data

until the destination host with receiving service is running.

ERDC Task 2 4Q Deliverable

The validation and standardization program is responsible for picking up received data

packets from the pick-up directory, using the proper method for extracting data and data

formats. Then validation is done on received data packet, if it has an error it is moved to the

received with error directory, otherwise the extraction is done on the received data packet,

individual buoy daily data files are updated from the data packet received. The received data

packet is then archived to the received directory for its services.

All files are plain text CSV text files. The validation program extracts all valid data for all

equipment and appends information to the resulting daily data files by type. Special file type

RAW contains all received data packets exactly as received before any validation and

formatting.

The winch data communication to the reception computer is shown in Figure 2.2.3. Once the

result of a winch mission is finished, the data is received at the Buoy controller from the

winch controller and the data is broken down into small data packets due to satellite and

cellular transmission limits and sent to the reception program.

Reception program intercept winch mission data packets create a temporary file until all data

received. Once received, file is copied to the specific buoy winch data directory

"WINCH_MISSIONS" subdirectory for that buoy.

There are two types of winch mission data that can be configured in the buoy controller, full

data transmission and low-resolution data transmission. Low resolution is suited for satellite

transmission reducing dramatically transmission cost while maintaining data validity with

slightly less precision. All winch mission full data is always stored on a flash card in the buoy

controller and are recoverable with a simple communication using the buoy menu also known

as win mission dump file.

All winch mission full data is always stored on a flash card in the buoy controller and are

recoverable with a simple communication using the buoy menu also known as win mission

dump file.

Figure 2.2.3: Overview of Winch Mission Data Transfer

ERDC Task 2 4Q Deliverable

After the validation of received data packets is done, the reception software generates .dat

files tagged with specific data, time, and name. Each of these files contains data relevant to

the sensors mounted on the Viking buoy. Additional files containing a summary of user-

specified sensor data are also produced by the reception program. The file with tag ” _SD_”

is a summary data file with the data format as shown below

<buoy name>_SD_<date>.dat

#1 Name of the buoy

#2 date buoy

#3 hour buoy

#4 latitude buoy

#5 longitude buoy

#6 speed of the wind in knots

#7 maximal speed of the wind in knots

#8 wind direction in degree

#9 air temperature in degree Fahrenheit

#10 air humidity relative in %

#11 air pressure in inHg

#12 Wave, period in second

#13 Wave, average height in meter

#14 Wave, height of the biggest wave in meter

#15 Voltage of the batteries in Volt

#16 Power of the charging solar in ampere

#17 Power of the charging Wind turbine in ampere

#18 Power drained in ampere

#19 Pitch in degree (compass)

#20 Roll in degree (compass)

#21 Heading buoy (compass) in degree

#22 Moving speed (GPS) in m/s

#23 Moving direction (GPS) in degree

#24 Rain accumulation from midnight in mm

#25 Current (ADCP RTI or RDI) bin #1 in m/s

#26 Current direction (ADCP RTI or RDI) in degree

#27 Water presence in the buoy controller box (0= no water, 1= water)

#28 Water presence in the Power controller box (0= no water, 1= water)

#29 Water presence in the Winch controller box (0= no water, 1= water)

Meteorological and oceanographic data can be extracted from this file and the CTD data can

be extracted from the files with tag “WDATA_” stored in a separate folder. The data format

of files tagged with “WDATA_” is shown below.

WDATA_<buoy_name>_<date and time>.txt

#1 Date hour

#2 conductivity in mS/cm

#3 temperature in C

#4 pressure in dbar

#5 depth in m,

#6 salinity in PSU

ERDC Task 2 4Q Deliverable

If the data is sent by satellite, 1 data by meter with less digits and only the values taken when

it is going down are transmitted, to save on transmission fees. In such case, low resolution

files are generated by the reception software tagged with “_LOWRES”.

WDATA_<buoy_name>_<date and time>_LOWRES.txt

#1 Date hour

#2 temperature in mS/cm

#3 depth in m

#4 salinity (PSU)

3. Iver3-Autonomous Underwater Vehicle
Iver3 is the first commercially developed family of low-cost Autonomous Underwater

Vehicles (AUVs). They are ideal for coastal applications such as sensor development, general

survey work, sub-surface security, research and environmental monitoring. The Iver3 AUV

vehicle can survey in coastal waters in depths ranging from 1 to 100 meters and in water

temperature ranging from 0º C to 35º C. Iver3 vehicle can be equipped with various sensors

from the list below in Figure 2.3.1

Figure 2.3.1: Optional Sensors for Iver3-AUV

USM’s Iver3 vehicle as shown in Figure 2.3.2 is equipped with a CT sensor that measures

conductivity, temperature, and salinity. The vehicle can measure this data along its surface

and sub-surface tracks at varying depths. Iver3 does not have the capability to relay data in

real time while it is being recorded, but the data can be recovered from the vehicle after the

mission is completed. The headers of the data log file retrieved from the vehicle is shown in

Figure 2.3.3. The data files recovered from the vehicle after the mission are uploaded to a

dedicated folder assigned for this vehicle in the ocean cube server. Afterwards, the

temperature and salinity information from these data sets is extracted to update the ocean

cube database.

ERDC Task 2 4Q Deliverable

Figure 2.3.2: Autonomous Underwater Vehicle Iver equipped with CTD sensor.

Figure 2.3.3: Iver3-3089 Data Log Format

4. Hi-Resolution Sensor Network (HRSN)

USM custom designed a high-resolution sensor network as shown in Figure 2.4.1 consisting

of several sensors that acquire oceanographic, meteorological and acoustic data at various

depths. This HRSN is deployed at near shore location HRTA1 as shown in Figure 1.1. The

HRSN is confined to an area of 35m radius circular region centered from HRSN station as

shown in Figure 2.4.2. A total of 18 temperature sensors, two CTD sensors, a tidal sensor, an

ADCP, a hydrophone, a wave sensor, a wind sensor and a weather station are included in the

HRSN. Out of the nine temperature nodes, two temperature sensors are attached to each

node, and each node is spaced 5m, 10m, and 20m apart from the HRSN station. One CTD

sensor is attached to each corresponding CTD node. Hydrophone, tidal sensor and ADCP can

be found at HRSN station. The HRSN station is connected to buoy on surface through a data

cable. Wind sensor and weather station are on the buoy along with a cellular modem. The

main controller on the buoy, known as vak-controller, collects observations data from each

ERDC Task 2 4Q Deliverable

sub-surface node as well as wind, wave, and weather station data for data transmission to the

ocean cube database through cellular communication.

HRSN has two software components, vak-acquisition and vak-reception softwares. Vak

acquisition software runs in the vak-controller that communicates with each sensor in the

network and cellular modem for data acquisition and transmission purposes. Vak-reception

software is installed in the ocean cube server that collects all the observations data, processes

it and then stores it in the ocean cube database. The real-time data transmission interval is

user defined and currently set at 15 minutes interval.

Grafana, a web-application is used for interactive data visualization and analytics. As Grafana

is an open-source platform, users can create several custom dashboards for data visualizations

as per their needs. Figure 2.4.3 shows CTD, wind, and tide data dashboards.

Figure 2.4.1: HRSN architecture

ERDC Task 2 4Q Deliverable

Figure 2.4.2: HRSN node layout

Figure 2.4.3: Grafana web application interface

ERDC Task 2 4Q Deliverable

3. Toolkit for Importing the Nearshore Ocean Cube Data:
Ocean cube observations data is stored in the ocean cube database as the data is ingested by

several observation nodes. This stored data can be used for visualization and analysis

purposes. Users will be able to import ocean cube observations data from the ocean cube web

browser, and users will also be able to visualize and analyze the data using Grafana.

The observations data files collected from several observation nodes is stored in the ocean

cube server at their corresponding dedicated folders. These files as per their data format

provided by the corresponding manufacturers are processed and then the processed data is

stored in the ocean cube database. A loader program is created for each observation node to

load the ocean cube database with the corresponding data from each observation node. The

data stored in the ocean cube database is available for retrieval depending on the SQL queries

made to the database from the ocean cube web interface.

The loader programs are written in widely used programming language called Python. The

ocean cube server hosts a Linux distribution and has Python 2.7.17 version installed. Each

loader program takes the path of data folder, database username and password as inputs. Each

loader program runs through the data files stored in the specified folder, extracts the needed

data and updates the data in database. Depending on the data transmission frequency of the

observation node, each loader program will be executed accordingly. In each run of the

loader program, the tables and columns of corresponding observation node in the database are

updated. The loader programs do not process the data files that are already existing in the

database as all the data is time stamped. The loader programs codes for WaveRider, Viking,

and Iver are presented in the appendices A-C respectively.

ERDC Task 2 4Q Deliverable

Appendix A:
WaveRider_Loader.py

'''

Created on March 17, 2021

This is the loader program for WaveRider Data Buoy. This program takes path to the folder where

WaveRider data files are collected, database username and password as inputs.

@author: vishwa sunkara.

Email: Vishwamithra.sunkara@usm.edu

'''

import json

import os

import sys

import mysql.connector

import math

import time

import datetime

from datetime import date

def getplatforms(cur):

 #

 #Read in the platform table and create a dictionary of platformIds with the platform name as the

key

 #

 sql="SELECT * FROM platform;"

 cur.execute(sql)

 recs=cur.fetchall()

 platforms={}

 for rec in recs:

 platforms[rec[1]]=rec[0]

 return platforms

ERDC Task 2 4Q Deliverable

def readFB0(filename,platforms):

 #

 #Read the "*{0xFB0}*.csv" file and create an array of dictionaries (one for each line or record in

the file)

 #containing only the data needed in the database tables

 #

 f=open(filename,'r')

 waves_records=[]

 currents_records=[]

 platform_records=[]

 ctd_records=[]

 #check if the file is empty

 if((os.stat(filename).st_size)==0):

 print("empty {0xFB0} file")

 return records

 for line in f:

 line = line.rstrip()

 waves_rec={}

 currents_rec={}

 platform_rec={}

 ctd_rec={}

 fields = line.split("\t")

 #

 #file is empty with new lines when no data is recorded

 #

 if fields[0] == '\n':

 print("no data except newlines in {0xFB0} file")

 return records

 waves_rec["platformId"]=int(platforms[filename[:filename.find('{')]])

ERDC Task 2 4Q Deliverable

 currents_rec["platformId"]=int(platforms[filename[:filename.find('{')]])

 platform_rec["platformId"]=int(platforms[filename[:filename.find('{')]])

 ctd_rec["platformId"]=int(platforms[filename[:filename.find('{')]])

 timestamp=time.gmtime(float(fields[0]))

 waves_rec["time"] = str(timestamp.tm_year) + '-' + str(timestamp.tm_mon)+ '-' +

str(timestamp.tm_mday) + ' ' + str(timestamp.tm_hour) + ':' + str(timestamp.tm_min) + ':' +

str(timestamp.tm_sec)

 lat = float(fields[9])*180/3.14159#lat rad to degrees

 waves_rec["latitude"] = lat

 lon = float(fields[10].replace('\n',''))*180/3.14159#long rad to degrees

 waves_rec["longitude"] = lon

 currents_rec["time"] = waves_rec["time"]

 platform_rec["time"] = waves_rec["time"]

 ctd_rec["time"] = waves_rec["time"]

 currents_rec["latitude"] = waves_rec["latitude"]

 platform_rec["latitude"] = waves_rec["latitude"]

 ctd_rec["latitude"] = waves_rec["latitude"]

 currents_rec["longitude"] = waves_rec["longitude"]

 platform_rec["longitude"] = waves_rec["longitude"]

 ctd_rec["longitude"] = waves_rec["longitude"]

 waves_rec["height"] = float(fields[2])#significant wave height

 waves_rec["period"] = float(fields[3])#mean wave period

 waves_rec["direction"] = float(fields[6])*180/3.14159#wave direction rad to deg conversion

 waves_rec["speed"] = 0.0#float("NaN")

 waves_rec["depth"] = 0.0

 ctd_rec["temperature"] = float(fields[12]) - 273.15# kelvin to deg celcius

ERDC Task 2 4Q Deliverable

 ctd_rec["conductivity"] = None#float("NaN")

 ctd_rec["salinity"] = None#float("NaN")

 ctd_rec["depth"] = None#float("NaN")

 currents_rec["speed"] = float(fields[13])#current speed m/s

 currents_rec["direction"] = float(fields[14])*180/3.1459#current direction rad to deg conversion

 currents_rec["depth"] = 0.0

 platform_rec["depth"] = 0.0

 platform_rec["speed"] = 0.0

 platform_rec["heading"] = 0.0

 waves_records.append(waves_rec)

 currents_records.append(currents_rec)

 platform_records.append(platform_rec)

 ctd_records.append(ctd_rec)

 f.close()

 return waves_records,currents_records,platform_records,ctd_records

def readF82(filename,platforms):

 #

 #Read the "*{0xF82}*.csv" file and create an array of dictionaries (one for each line or record in

the file)

 #containing only the data needed in the database tables

 #

 f=open(filename,'r')

ERDC Task 2 4Q Deliverable

 records=[]

 #check if the file is empty

 if((os.stat(filename).st_size)==0):

 print("empty {0xF82} file")

 return records

 for line in f:

 line=line.rstrip()

 rec={}

 fields = line.split("\t")

 #

 #file is empty with new lines when no data is recorded

 #

 if fields[0] == '\n':

 print("no data except newlines in {0xF82} file")

 return records

 rec["platformId"]=int(platforms[filename[:filename.find('{')]])

 timestamp=time.gmtime(float(fields[0]))

 rec["time"] = str(timestamp.tm_year) + '-' + str(timestamp.tm_mon)+ '-' +

str(timestamp.tm_mday) + ' ' + str(timestamp.tm_hour) + ':' + str(timestamp.tm_min) + ':' +

str(timestamp.tm_sec)

 rec["speed"] = float(fields[3])#currents speed m/s

 rec["direction"] = float(fields[4])*180/3.1417#currents direction rad to deg conversion

 rec["depth"] = 0.0

 rec["temperature"] = float(fields[10])-273.15#sea surface water temperature Kelvin to deg

celcius conversion

 rec["conductivity"] = None#float("NaN")

 rec["salinity"] = None#float("NaN")

 records.append(rec)

 f.close()

 return records

ERDC Task 2 4Q Deliverable

def readF80(filename,platforms):

 #

 #Read the "*{0xF80}*.csv" file and create an array of dictionaries (one for each line or record in

the file)

 #containing only the data needed in the database tables

 #

 f=open(filename,'r')

 records=[]

 #check if the file is empty

 if((os.stat(filename).st_size)==0):

 print("empty {0xF80} file")

 return records

 for line in f:

 rec={}

 fields = line.split("\t")

 #

 #file is empty with new lines when no data is recorded

 #

 if fields[0] == '\n':

 print("no data except newlines in {0xF80} file")

 return records

 rec["platformId"]=int(platforms[filename[:filename.find('{')]])

 timestamp=time.gmtime(float(fields[0]))

 rec["time"] = str(timestamp.tm_year) + '-' + str(timestamp.tm_mon)+ '-' +

str(timestamp.tm_mday) + ' ' + str(timestamp.tm_hour) + ':' + str(timestamp.tm_min) + ':' +

str(timestamp.tm_sec)

 lat = float(fields[2])*180/3.14159#lat rad to degrees

 rec["latitude"] = lat

 lon = float(fields[3].replace('\n',''))*180/3.14159#long rad to degrees

 rec["longitude"] = lon

 rec["depth"] = 0.0

ERDC Task 2 4Q Deliverable

 rec["heading"] = 0.0#float(NaN)

 rec["speed"] = 0.0#float(NaN)

 records.append(rec)

 f.close()

 return records

def readF25(filename,platforms):

 #

 #Read the "*{0xF25}*.csv" file and create an array of dictionaries (one for each line or record in

the file)

 #containing only the data needed in the database tables

 #

 f=open(filename,'r')

 records=[]

 #check if the file is empty

 if((os.stat(filename).st_size)==0):

 print("empty {0xF25} file")

 return records

 for line in f:

 rec={}

 fields = line.split("\t")

 #

 #file is empty with new lines when no data is recorded

 #

 if fields[0] == '\n':

 print("no data except newlines in {0xF25} file")

 return records

 rec["platformId"]=int(platforms[filename[:filename.find('{')]])

 timestamp=time.gmtime(float(fields[0]))

ERDC Task 2 4Q Deliverable

 rec["time"] = str(timestamp.tm_year) + '-' + str(timestamp.tm_mon)+ '-' +

str(timestamp.tm_mday) + ' ' + str(timestamp.tm_hour) + ':' + str(timestamp.tm_min) + ':' +

str(timestamp.tm_sec)

 rec["height"] = float(fields[3])#wave height in m

 rec["period"] = float(fields[6])#wave period in s

 rec["direction"] = float(fields[13])*180/3.14159#wave direction in deg

 records.append(rec)

 f.close()

 return records

#This is the main program. It requires 3 arguments on the command line.

#1st argument is a directory name where the Viking (USMR1) data files reside. This program will

open all the

source files into a dictionary array (a dictionary for each row) maintaining only the values needed

for the load.

#2nd argument is the database username needed to establish the connection.

#3rd argument is the password.

#The following line makes the database connection

con =

mysql.connector.connect(host="localhost",user=sys.argv[2],passwd=sys.argv[3],database="oceancu

be")

cur=con.cursor()

#Read in the platform table and create a dictionary of platformIds with the platform name as the key

platforms=getplatforms(cur)

#These are the list of fields in the 3 tables that are populated by the SD records.

ERDC Task 2 4Q Deliverable

metfields=["time","latitude","longitude","windSpeed","windDirection","temperature","humidity","p

ressure","altitude","platformId"]

currentsfields=["time","latitude","longitude","speed","direction","depth","platformId"]

wavesfields=["time","latitude","longitude","period","height","platformId"]

#These are the list of fields in the 3 tables that are populated by the METEOCE and WDATA records.

pHfields=["time","latitude","longitude","depth","pH","platformId"]

platformfields=["time","latitude","longitude","depth","speed","heading","platformId"]

CTDfields=["time","latitude","longitude","conductivity","temperature","salinity","depth","platformI

d"]

#These are the list of fields in the 1 table that are populated by the TRIPLET records.

chlorofields=["time","latitude","longitude","depth","chlorophyll","platformId"]

#The argument is the path to the checkins directory (where all the .dat files are stored)

checkinsdir=sys.argv[1]

os.chdir(checkinsdir)

yyyy_folders=os.listdir(checkinsdir)

for yyyy_folder in yyyy_folders:

 mm_folders = os.listdir(checkinsdir + '/' + yyyy_folder)

 for mm_folder in mm_folders:

 files = os.listdir(checkinsdir + '/' + yyyy_folder + '/' + mm_folder)

 os.chdir(checkinsdir + '/' + yyyy_folder + '/' + mm_folder)

 files = sorted(files,reverse=True)

 #

 #flag variables to indicate if any of these files exist or not

 #

 FB0_flag=0

ERDC Task 2 4Q Deliverable

 F82_flag=0

 F80_flag=0

 F25_flag=0

 #

 for filename in files:

 #

 #Only process the .csv files

 #

 if filename[-4:] != ".csv":continue

 #

 #print(filename)

 #

 if filename.find("{0xFB0}") != -1:

 #

 #raise FB0 flag to skip reading other files except F83file

 #

 FB0_flag = 1

 #

 #

 #see if the platform name exists in the platform table

 #

 p=filename[:filename.find("{")]

 try:

 platformId=platforms[p]

 except:

 sql="INSERT INTO platform (name) VALUES ('"+p+"');"

 cur.execute(sql)

 con.commit()

 #

ERDC Task 2 4Q Deliverable

 #Read in the platform table and create a dictionary of platformIds with the platform

name as the key

 #

 platforms=getplatforms(cur)

 #

 #

 #Read the "{0xF80}" file and return a list of dictionaries (one for each row)

 #

 waves_recs,currents_recs,platform_recs,CTD_recs=readFB0(filename,platforms)

 #

 if (platform_recs==[]):continue

 #

 #check for duplicates. Check if a platformPosition record with the same time and platform

of the first row exists

 #

 sql="SELECT * FROM platformPosition WHERE

platformId="+str(platform_recs[0]["platformId"])+" AND time='"+platform_recs[0]["time"]+"';"

 cur.execute(sql)

 duplicate=cur.fetchall()

 if len(duplicate)>0:continue

 for rec in platform_recs:

 #

 #create the platformPosition insert sql command for each row

 #

 fields="("

 values="("

 for field in platformfields:

 value=rec[field]

 if value is None:continue

ERDC Task 2 4Q Deliverable

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 values=values[:-1]+")"

 sql="insert into platformPosition "+fields+" VALUES "+values+";"

 #

 #insert the platformPosition record

 #

 cur.execute(sql)

 if (waves_recs==[]):continue

 #

 #check for duplicates. Check if a waves record with the same time and platform of the first

row exists

 #

 sql="SELECT * FROM waves WHERE platformId="+str(waves_recs[0]["platformId"])+" AND

time='"+waves_recs[0]["time"]+"';"

 cur.execute(sql)

 duplicate=cur.fetchall()

 if len(duplicate)>0:continue

 for rec in waves_recs:

 #

 #create the waves insert sql command for each row

 #

 fields="("

 values="("

 for field in wavesfields:

 value=rec[field]

 if value is None:continue

ERDC Task 2 4Q Deliverable

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 values=values[:-1]+")"

 sql="insert into waves "+fields+" VALUES "+values+";"

 #

 #insert the waves record

 #

 cur.execute(sql)

 if (currents_recs==[]):continue

 #

 #check for duplicates. Check if a currents record with the same time and platform of the

first row exists

 #

 sql="SELECT * FROM currents WHERE platformId="+str(currents_recs[0]["platformId"])+"

AND time='"+currents_recs[0]["time"]+"';"

 cur.execute(sql)

 duplicate=cur.fetchall()

 if len(duplicate)>0:continue

 for rec in currents_recs:

 #

 #create the currents insert sql command for each row

 #

 fields="("

 values="("

 for field in currentsfields:

 value=rec[field]

ERDC Task 2 4Q Deliverable

 if value is None:continue

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 values=values[:-1]+")"

 sql="insert into currents "+fields+" VALUES "+values+";"

 #

 #insert the currents record

 #

 cur.execute(sql)

 if (CTD_recs==[]):continue

 #

 #check for duplicates. Check if a CTD record with the same time and platform of the first

row exists

 #

 sql="SELECT * FROM CTD WHERE platformId="+str(CTD_recs[0]["platformId"])+" AND

time='"+CTD_recs[0]["time"]+"';"

 cur.execute(sql)

 duplicate=cur.fetchall()

 if len(duplicate)>0:continue

 for rec in CTD_recs:

 #

 #create the currents insert sql command for each row

 #

 fields="("

 values="("

 for field in CTDfields:

ERDC Task 2 4Q Deliverable

 value=rec[field]

 if value is None:continue

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 values=values[:-1]+")"

 sql="insert into CTD "+fields+" VALUES "+values+";"

 #

 #insert the CTD record

 #

 cur.execute(sql)

 elif FB0_flag == 0 and filename.find("{0xF83}") != -1:

 #

 #see if the platform name exists in the platform table

 #

 p=filename[:filename.find("{")]

 try:

 platformId=platforms[p]

 except:

 sql="INSERT INTO platform (name) VALUES ('"+p+"');"

 cur.execute(sql)

 con.commit()

 #

 #Read in the platform table and create a dictionary of platformIds with the platform

name as the key

 #

 platforms=getplatforms(cur)

ERDC Task 2 4Q Deliverable

 #

 #

 #Read the "{0xF83}" file and return a list of dictionaries (one for each row)

 #

 F83recs=readF83(filename,platforms)

 if F83recs:

 F83_flag=1

 elif FB0_flag == 0 and filename.find("{0xF82}") != -1:

 #

 #see if the platform name exists in the platform table

 #

 p=filename[:filename.find("{")]

 try:

 platformId=platforms[p]

 except:

 sql="INSERT INTO platform (name) VALUES ('"+p+"');"

 cur.execute(sql)

 con.commit()

 #

 #Read in the platform table and create a dictionary of platformIds with the platform

name as the key

 #

 platforms=getplatforms(cur)

 #

 #

 #Read the "{0xF82}" file and return a list of dictionaries (one for each row)

 #

 F82recs=readF82(filename,platforms)

 if F82recs:

 F82_flag=1

 elif FB0_flag == 0 and filename.find("{0xF80}") != -1:

ERDC Task 2 4Q Deliverable

 #

 #see if the platform name exists in the platform table

 #

 p=filename[:filename.find("{")]

 try:

 platformId=platforms[p]

 except:

 sql="INSERT INTO platform (name) VALUES ('"+p+"');"

 cur.execute(sql)

 con.commit()

 #

 #Read in the platform table and create a dictionary of platformIds with the platform

name as the key

 #

 platforms=getplatforms(cur)

 #

 #

 #Read the "{0xF80}" file and return a list of dictionaries (one for each row)

 #

 F80recs=readF80(filename,platforms)

 if F80recs:

 F80_flag=1

 #print(F80recs)

 elif FB0_flag == 0 and filename.find("{0xF25}") != -1:

 #

 #see if the platform name exists in the platform table

 #

 p=filename[:filename.find("{")]

 try:

 platformId=platforms[p]

 except:

ERDC Task 2 4Q Deliverable

 sql="INSERT INTO platform (name) VALUES ('"+p+"');"

 cur.execute(sql)

 con.commit()

 #

 #Read in the platform table and create a dictionary of platformIds with the platform

name as the key

 #

 platforms=getplatforms(cur)

 #

 #

 #Read the "{0xF25}" file and return a list of dictionaries (one for each row)

 #

 F25recs=readF25(filename,platforms)

 if F25recs:

 F25_flag=1

 #print(F25recs)

 if FB0_flag == 0:

 if F80_flag == 1 and F82_flag ==1:

 #

 #check for duplicates. Check if a currents record with the same time and platform of the

first row exists

 #this condition also applies for all other records

 #

 sql="SELECT * FROM currents WHERE platformId="+str(F82recs[0]["platformId"])+" AND

time='"+F82recs[0]["time"]+"';"

 cur.execute(sql)

 duplicate=cur.fetchall()

 if len(duplicate) == 0:

 for row,rec in enumerate(F82recs):

 if row>=len(F80recs):

 F82recs[row]["latitude"] = F80recs[len(F80recs)-1]["latitude"]

ERDC Task 2 4Q Deliverable

 F82recs[row]["longitude"] = F80recs[len(F80recs)-1]["longitude"]

 else:

 F82recs[row]["latitude"] = F80recs[row]["latitude"]

 F82recs[row]["longitude"] = F80recs[row]["longitude"]

 fields="("

 values="("

 #

 #create the currents insert sql command for each row

 #

 for field in currentsfields:

 value=rec[field]

 if value is None:continue

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 values=values[:-1]+")"

 sql="insert into currents "+fields+" VALUES "+values+";"

 fields="("

 values="("

 #

 #create the CTD insert sql command for each row

 #

 for field in CTDfields:

 value=rec[field]

 if value is None:continue

 if isinstance(value,basestring):

 values+="'"+value+"',"

ERDC Task 2 4Q Deliverable

 else:

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 values=values[:-1]+")"

 sql="insert into CTD "+fields+" VALUES "+values+";"

 cur.execute(sql)

 if F80_flag ==1 and F25_flag ==1:

 #check for duplicates. Check if a waves record with the same time and platform of the first

row exists

 #this condition also applies for all other records

 #

 sql="SELECT * FROM waves WHERE platformId="+str(F25recs[0]["platformId"])+" AND

time='"+F25recs[0]["time"]+"';"

 cur.execute(sql)

 duplicate=cur.fetchall()

 if len(duplicate) ==0:

 for row,rec in enumerate(F25recs):

 if row>=len(F80recs):

 F25recs[row]["latitude"] = F80recs[len(F80recs)-1]["latitude"]

 F25recs[row]["longitude"] = F80recs[len(F80recs)-1]["longitude"]

 else:

 F25recs[row]["latitude"] = F80recs[row]["latitude"]

 F25recs[row]["longitude"] = F80recs[row]["longitude"]

 fields="("

 values="("

 #

 #create the waves insert sql command for each row

 #

 for field in wavesfields:

 value=rec[field]

 if value is None:continue

ERDC Task 2 4Q Deliverable

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 values=values[:-1]+")"

 sql="insert into waves "+fields+" VALUES "+values+";"

 #print sql

 if F80_flag ==1:

 #check for duplicates. Check if a platformPosition record with the same time and platform

of the first row exists

 #this condition also applies for all other records

 #

 sql="SELECT * FROM waves WHERE platformId="+str(F80recs[0]["platformId"])+" AND

time='"+F80recs[0]["time"]+"';"

 cur.execute(sql)

 duplicate=cur.fetchall()

 if len(duplicate) ==0 and F80_flag == 1:

 for row,rec in enumerate(F80recs):

 fields="("

 values="("

 #

 #create the platformPosition insert sql command for each row

 #

 for field in platformfields:

 value=rec[field]

 if value is None:continue

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

 values+=str(value)+","

ERDC Task 2 4Q Deliverable

 fields+=field+","

 fields=fields[:-1]+")"

 values=values[:-1]+")"

 sql="insert into platformPosition "+fields+" VALUES "+values+";"

#It doesn't really happen until we do a commit

con.commit()

print "Finished"

Appendix B:
Viking_Loader.py

'''

Created on Feb 23, 2021

@author: vishwa

'''

import json

import os

import sys

import mysql.connector

import math

def getplatforms(cur):

 #

 #Read in the platform table and create a dictionary of platformIds with the platform name as the

key

ERDC Task 2 4Q Deliverable

 #

 sql="SELECT * FROM platform;"

 cur.execute(sql)

 recs=cur.fetchall()

 platforms={}

 for rec in recs:

 platforms[rec[1]]=rec[0]

 return platforms

def readSD(filename,platforms):

 #

 #Read the "*_SD*.dat" file and create an array of dictionaries (one for each line or record in the

file)

 #containing only the data needed in the database tables

 #

 f=open(filename,'r')

 #print("filename SD?")

 #print(filename)

 #print("PLATFORMS INSIDE readSD = ")

 #print(platforms)

 records=[]

 for line in f:

 line=line.rstrip()

 rec={}

 fields=line.split(",")

 #print(fields)

 rec["platformId"]=int(platforms[fields[0].replace('\xef\xbb\xbf','')])

 if fields[1][0] == '#':

 rec["time"] = float("NaN")

 else:

 rec["time"]=fields[1].replace ('/','-')+" "+fields[2]

ERDC Task 2 4Q Deliverable

 if fields[3][0]=='#':

 rec["latitude"] = float("NaN")

 else:

 degmin=fields[3].split()

 lat=float(degmin[0])+float(degmin[1][:-1])/60. #degrees minutes to degrees

 if degmin[1][-1]=="S":lat=-lat

 rec["latitude"]=lat

 if fields[4][0] == '#':

 rec["longitude"] = float("NaN")

 else:

 degmin=fields[4].split()

 lon=float(degmin[0])+float(degmin[1][:-1])/60. #degrees minutes to degrees

 if degmin[1][-1]=="W":lon=-lon

 rec["longitude"]=lon

 if fields[5][0] == '#':

 rec["windSpeed"] = float("NaN")

 else:

 rec["windSpeed"]=float(fields[5])*0.51444444444444 # convert knots to meters/second

 if fields[6][0] == '#':

 rec["windMaxSpeed"] = float("NaN")

 else:

 rec["windMaxSpeed"]=float(fields[6])*0.51444444444444 # convert knots to meters/second

 if fields[7][0] == '#':

 rec["windDirection"]=999

 else:

 rec["windDirection"]=int(fields[7])

 if fields[8][0] == '#':

 rec["temperature"]=float("NaN")

 else:

 rec["temperature"]=(float(fields[8])-32.)*5./9. #Fahrenheit to Celsius

 if fields[9][0] == '#':

ERDC Task 2 4Q Deliverable

 rec["humidity"]=float("NaN")

 else:

 rec["humidity"]=float(fields[9])

 if fields[10][0] == '#':

 rec["pressure"]=float("NaN")

 else:

 rec["pressure"]=float(fields[10])

 #

 #A '#' in the field indicates the data does not exists. Replace the value with a NaN for floats and

999 for integers

 #

 if fields[11][0]=='#':

 rec["period"]=float("NaN")

 else:

 rec["period"]=float(fields[11])

 if fields[12][0]=='#':

 rec["height"]=float("NaN")

 else:

 rec["height"]=float(fields[12])

 if fields[13][0]=='#':

 rec["peak"]=float("NaN")

 else:

 rec["peakHeight"]=float(fields[13])

 if fields[24][0]=='#':

 rec["speed"]=float("NaN")

 else:

 rec["speed"]=float(fields[24])

 if fields[25][0]=='#':

 rec["direction"]=999

 else:

 rec["direction"]=int(fields[25])

ERDC Task 2 4Q Deliverable

 rec["depth"]=float(0.)

 rec["altitude"]=float(0.)

 records.append(rec)

 f.close()

 return records

def readADCP(filename,platforms,lat,lon):

 #

 #Read the "*_ADCP*.dat" file and create an array of dictionaries (one for each line or record in the

file)

 #containing only the data needed in the database tables

 #

 f=open(filename,'r')

 #print("filename ADCP?")

 #print(filename)

 #print("PLATFORMS INSIDE readADCP = ")

 #print(platforms)

 records=[]

 for position,line in enumerate(f):

 line=line.rstrip()

 #rec={}

 fields=line.split(",")

 #print(fields)

 #print(position)

 for position1,field in enumerate(fields):

 rec={}

 rec["platformId"]=int(platforms[filename[:filename.find("_")]])

 if position1 == 0:

 # if fields[0][0] == '#':

 # rec["time"] = float("NaN")

ERDC Task 2 4Q Deliverable

 # else:

 # rec["time"]=(fields[0].replace('\xef\xbb\xbf','')).replace ('/','-')+" "+fields[1]

 individual_bin_height = float(fields[3])/100#cm to m conversion

 depth = float(fields[4])/100#cm to m conversion

 if position1%6 == 0.0:

 if fields[0][0] == '#':

 rec["time"] = float("NaN")

 else:

 rec["time"]=(fields[0].replace('\xef\xbb\xbf','')).replace ('/','-')+" "+fields[1]

 rec["depth"] = depth#float(fields[4])/100 + (position1/6)*individual_bin_height#cm to m

conversion

 depth = depth + individual_bin_height

 rec["latitude"] = lat

 rec["longitude"] = lon

 if fields[position1+4][0] == '#':

 rec["speed"] = float("NaN")

 else:

 rec["speed"] = float(fields[position1+4])

 if fields[position1+5][0] == "#":

 rec["direction"] = 999

 else:

 rec["direction"] = int(fields[position1+5])

 records.append(rec)

 #print(rec)

 #print(records)

 f.close()

 return records

def readMETEOCE(filename,platforms):

ERDC Task 2 4Q Deliverable

 #

 #Read the "*_METEOCE_*.dat" file and create an array of dictionaries (one for each line or record

in the file)

 #containing only the data needed in the database tables

 #

 f=open(filename,'r')

 #print("filename METEOCE?")

 #print(filename)

 records=[]

 for line in f:

 line=line.rstrip()

 rec={}

 fields=line.split(",")

 #print(fields)

 rec["platformId"]=int(platforms[filename[:filename.find("_")]])

 rec["time"]=fields[0].replace ('/','-')+" "+fields[1]

 degmin=fields[2].split()

 #print(degmin)

 lat=float(degmin[0])+float(degmin[1][:-1])/60. #degrees minutes to degrees

 if degmin[1][-1]=="S":lat=-lat

 rec["latitude"]=lat

 degmin=fields[3].split()

 lon=float(degmin[0])+float(degmin[1][:-1])/60. #degrees minutes to degrees

 if degmin[1][-1]=="W":lon=-lon

 rec["longitude"]=lon

 #

 #A '#' in the field indicates the data does not exists. Replace the value with a NaN for floats and

999 for integers

 #

 if fields[27][0]=='#':

 rec["pH"]=float("nan")

 else:

ERDC Task 2 4Q Deliverable

 rec["pH"]=float(fields[27])

 rec["depth"]=float(0.)

 rec["altitude"]=float(0.)

 rec["speed"]=float(0.)

 rec["heading"]=float(0.)

 records.append(rec)

 f.close()

 return records

def readTRIPLET(filename,platforms):

 #

 #Read the "*_TRIPLET_*.dat" file and create an array of dictionaries (one for each line or record in

the file)

 #containing only the data needed in the database tables

 #

 f=open(filename,'r')

 records=[]

 for line in f:

 line=line.rstrip()

 rec={}

 fields=line.split(",")

 rec["platformId"]=int(platforms[filename[:filename.find("_")]])

 rec["time"]=fields[0].replace ('/','-')+" "+fields[1]

 #rec["chlorophyl"]=float(fields[10])#ug/L

 #

 #A '#' in the field indicates the data does not exists. Replace the value with a NaN for floats and

999 for integers

 #

 if fields[10][0]=='#':

 rec["chlorophyll"]=float("NaN")

 else:

 rec["chlorophyll"]=float(fields[10])

ERDC Task 2 4Q Deliverable

 rec["depth"]=float(0.)

 rec["altitude"]=float(0.)

 records.append(rec)

 f.close()

 return records

def readWDATA(filename,platforms):

 #

 #Read the "*WDATA*.txt" file and create an array of dictionaries (one for each line or record in

the file)

 #containing only the data needed in the database tables

 #

 f=open(filename,'r')

 #f = f.read().decode("utf-8-sig").encode("utf-8")

 #print("filename WDATA?")

 #print(filename)

 #print("PLATFORMS INSIDE readWDATA = ")

 #print(platforms)

 records=[]

 for position,line in enumerate(f):

 line = line.rstrip()

 rec={}

 if position == 0:

 fields=line.split(" ")

 #print("time fields=")

 #print(fields)

 time=(fields[1].replace ('/','-')).replace('\r\n','')+" "+fields[0].replace('\xef\xbb\xbf','')

 #print("time?")

 #print(time)

 #print(fields[1])

 elif position == 1:

ERDC Task 2 4Q Deliverable

 platform = line.replace('\r\n','')#"USM-R1"

 #print("platform?")

 #print(platform)

 #print(len(platform))

 elif position == 2:

 fields=line.split(",")

 degmin=fields[0].split()

 lat=float(degmin[0])+float(degmin[1][:-1])/60. #degrees minutes to degrees

 #rec["latitude"]=lat

 if degmin[1][-1]=="S":lat=-lat

 degmin=fields[1].split()

 lon=float(degmin[0])+float(degmin[1][:-1])/60. #degrees minutes to degrees

 if degmin[1][-1]=="W":lon=-lon

 elif position>3:

 fields=line.split(",")

 if fields==['']:continue

 #print(fields)

 rec["platformId"]=int(platforms[platform])

 #print(rec["platformId"])

 #print("time in line >3")

 #print(time)

 rec["time"]=time

 rec["latitude"]=lat

 rec["longitude"]=lon

 #print("fields=")

 #print(fields)

 #print("fields[0][0]=")

 #print(fields[0][0])

 if fields[3][0] == '#':

 rec["depth"]=float("NaN")#meters

ERDC Task 2 4Q Deliverable

 else:

 rec["depth"]=float(fields[3])#meters

 if fields[1][0] == '#':

 rec["temperature"]=float("NaN")#deg Celius

 else:

 rec["temperature"]=float(fields[1])#meters

 if fields[4][0] == '#':

 rec["salinity"]=float("NaN")#PSU

 else:

 rec["salinity"]=float(fields[4])#PSU

 if fields[0][0] == '#':

 rec["conductivity"]=float("NaN")#

 else:

 rec["conductivity"]=float(fields[0])#

 if fields[3][0] == '#':

 rec["pressure"]=float("NaN")#

 else:

 rec["pressure"]=float(fields[3])#

 #print(rec)

 records.append(rec)

 # if position == 3:#if line count is 4 then there is no ctd data acquired. So, inserting NaNs to

indicate this.

 # rec["platformId"]=int(platforms[platform])

 # rec["time"]=time

 # rec["latitude"]=lat

 # rec["longitude"]=lon

 # rec["depth"]=float("NaN")#meters

 # rec["temperature"]=float("NaN")#deg Celius

 # rec["salinity"]=float("NaN")

 # rec["conductivity"]=float("NaN")

 # rec["density"]=float("NaN")

ERDC Task 2 4Q Deliverable

 # records.append(rec)

 f.close()

 return records

def readWDATA_LOWRES(filename,platforms):

 #

 #Read the "*WDATA _LOWRES*.txt" file and create an array of dictionaries (one for each line or

record in the file)

 #containing only the data needed in the database tables

 #

 f=open(filename,'r')

 #f = f.read().decode("utf-8-sig").encode("utf-8")

 #print("filename WDATA_LOWRES?")

 #print(filename)

 #print("PLATFORMS INSIDE readWDATA = ")

 #print(platforms)

 records=[]

 for position,line in enumerate(f):

 line = line.rstrip()

 rec={}

 if position == 0:

 fields=line.split(" ")

 #print("time fields=")

 #print(fields)

 time=(fields[1].replace ('/','-')).replace('\r\n','')+" "+fields[0].replace('\xef\xbb\xbf','')

 #print("time?")

 #print(time)

 #print(fields[1])

 elif position == 1:

 platform = line.replace('\r\n','')#"USM-R1"

ERDC Task 2 4Q Deliverable

 # print("platform?")

 # print(platform)

 #print(len(platform))

 elif position == 2:

 fields=line.split(",")

 degmin=fields[0].split()

 lat=float(degmin[0])+float(degmin[1][:-1])/60. #degrees minutes to degrees

 #rec["latitude"]=lat

 if degmin[1][-1]=="S":lat=-lat

 degmin=fields[1].split()

 lon=float(degmin[0])+float(degmin[1][:-1])/60. #degrees minutes to degrees

 if degmin[1][-1]=="W":lon=-lon

 elif position>3:

 fields=line.split(",")

 if fields==['']:continue

 #print(fields)

 rec["platformId"]=int(platforms[platform])

 #print(rec["platformId"])

 #print("time in line >3")

 #print(time)

 rec["time"]=time

 rec["latitude"]=lat

 rec["longitude"]=lon

 # print("fields=")

 # print(fields)

 #print("fields[0][0]=")

 #print(fields[0][0])

 if fields[0][0] == '#':

 rec["temperature"]=float("NaN")#deg Celius

 else:

ERDC Task 2 4Q Deliverable

 rec["temperature"]=float(fields[0])#

 if fields[1][0] == '#':

 rec["depth"]=float("NaN")

 else:

 rec["depth"]=float(fields[1])#meters

 if fields[2][0] == '#':

 rec["salinity"]=float("NaN")#PSU

 else:

 rec["salinity"]=float(fields[2])#PSU

 rec["conductivity"]=None#float("NaN")

 #print(rec)

 records.append(rec)

 #print(records)

 # if position == 3:#if line count is 4 then there is no ctd data acquired. So, inserting NaNs to

indicate this.

 # rec["platformId"]=int(platforms[platform])

 # rec["time"]=time

 # rec["latitude"]=lat

 # rec["longitude"]=lon

 # rec["depth"]=float("NaN")#meters

 # rec["temperature"]=float("NaN")#deg Celius

 # rec["salinity"]=float("NaN")

 # rec["conductivity"]=float("NaN")

 # rec["density"]=float("NaN")

 # records.append(rec)

 f.close()

 return records

ERDC Task 2 4Q Deliverable

#This is the main program. It requires 3 arguments on the command line.

#1st argument is a directory name where the Viking (USMR1) data files reside. This program will

open all the

source files into a dictionary array (a dictionary for each row) maintaining only the values needed

for the load.

#2nd argument is the database username needed to establish the connection.

#3rd argument is the password.

#The following line makes the database connection

con =

mysql.connector.connect(host="localhost",user=sys.argv[2],passwd=sys.argv[3],database="oceancu

be")

cur=con.cursor()

#Read in the platform table and create a dictionary of platformIds with the platform name as the key

platforms=getplatforms(cur)

#These are the list of fields in the 3 tables that are populated by the SD records.

metfields=["time","latitude","longitude","windSpeed","windDirection","temperature","humidity","p

ressure","altitude","platformId"]

currentsfields=["time","latitude","longitude","speed","direction","depth","platformId"]

wavefields=["time","latitude","longitude","period","height","platformId"]

#These are the list of fields in the 3 tables that are populated by the METEOCE and WDATA records.

pHfields=["time","latitude","longitude","depth","pH","platformId"]

platformfields=["time","latitude","longitude","depth","speed","heading","platformId"]

CTDfields=["time","latitude","longitude","conductivity","temperature","salinity","depth","platformI

d"]

ERDC Task 2 4Q Deliverable

#These are the list of fields in the 1 table that are populated by the TRIPLET records.

chlorofields=["time","latitude","longitude","depth","chlorophyll","platformId"]

#The argument is the path to the checkins directory (where all the .dat files are stored)

checkinsdir=sys.argv[1]

#print checkinsdir

os.chdir(checkinsdir)

files=os.listdir(checkinsdir)

#print("files = ")

#print(files)

files = sorted(files,reverse=True)

print(files)

for filename in files:

 #print(filename)

 #

 #Only process the .dat files

 #

 if filename[-4:] != ".dat":continue

 #

 #only process the "_SD_" files

 #

 if filename.find("_SD_") != -1:

 #

 #see if the platform name exists in the platform table

 #

 p=filename[:filename.find("_")]

 try:

 platformId=platforms[p]

ERDC Task 2 4Q Deliverable

 except:

 sql="INSERT INTO platform (name) VALUES ('"+p+"');"

 #print sql

 cur.execute(sql)

 con.commit()

 #

 #Read in the platform table and create a dictionary of platformIds with the platform name as

the key

 #

 platforms=getplatforms(cur)

 #

 #Read the "_SD_" file and return a list of dictionaries (one for each row)

 #

 SDrecs=readSD(filename,platforms)

 #print("SDrecs=")

 #print(SDrecs)

 #

 if (SDrecs==[]):continue

 #

 #check for duplicates. Check if a meteorology record with the same time and platform of the

first row exists

 #

 #print("SDrec[0]=")

 #print(SDrecs[0])

 lat = SDrecs[0]["latitude"]

 lon = SDrecs[0]["longitude"]

 sql="SELECT * FROM meteorology WHERE platformId="+str(SDrecs[0]["platformId"])+" AND

time='"+SDrecs[0]["time"]+"';"

 cur.execute(sql)

 duplicate=cur.fetchall()

ERDC Task 2 4Q Deliverable

 if len(duplicate)>0:continue

 #print("printed?")

 for rec in SDrecs:

 #

 #create the meteorology insert sql command for each row

 #

 fields="("

 values="("

 if not math.isnan(rec["windSpeed"]): #If there was a '#' in the field it was converted to a NaN.

Don't load these records

 for field in metfields:

 value=rec[field]

 if value is None:continue

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 #print fields

 values=values[:-1]+")"

 #print values

 sql="insert into meteorology "+fields+" VALUES "+values+";"

 #print("meteorology sql")

 #print sql

 #

 #insert the meteorology record

 #

 cur.execute(sql)

 if not math.isnan(rec["speed"]): #If there was a '#' in the field it was converted to a NaN.

Don't load these records

 #

ERDC Task 2 4Q Deliverable

 #create the currents insert sql command for each row

 #

 fields="("

 values="("

 for field in currentsfields:

 value=rec[field]

 if value is None:continue

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 #print fields

 values=values[:-1]+")"

 #print values

 sql="insert into currents "+fields+" VALUES "+values+";"

 #print("currents sql")

 #print sql

 #

 #insert the currents record

 #

 cur.execute(sql)

 if not math.isnan(rec["period"]): #If there was a '#' in the field it was converted to a NaN.

Don't load these records

 #

 #create the waves insert sql command for each row

 #

 fields="("

 values="("

 for field in wavefields:

ERDC Task 2 4Q Deliverable

 value=rec[field]

 if value is None:continue

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 #print fields

 values=values[:-1]+")"

 #print values

 sql="insert into waves "+fields+" VALUES "+values+";"

 #print("waves sql")

 #print sql

 #

 #insert the currents record

 #

 cur.execute(sql)

 elif filename.find("_METEOCE_") != -1:

 #Read the "_METEOCE_" file and return a list of dictionaries (one for each row)

 #

 METEOCErecs=readMETEOCE(filename,platforms)

 #print("METEOCErecs=")

 #print(METEOCErecs)

 #

 if(METEOCErecs==[]): continue

 #check for duplicates. Check if a pH record with the same time and platform of the first row

exists

 #

 sql="SELECT * FROM pH WHERE platformId="+str(METEOCErecs[0]["platformId"])+" AND

time='"+ METEOCErecs[0]["time"]+"';"

 cur.execute(sql)

ERDC Task 2 4Q Deliverable

 duplicate=cur.fetchall()

 if len(duplicate)>0:continue

 for rec in METEOCErecs:

 fields="("

 values="("

 if not math.isnan(rec["pH"]): #If there was a '#/NaN' in the field it was converted to a NaN.

Don't load these records

 for field in pHfields:

 value=rec[field]

 if value is None:continue

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 #print fields

 values=values[:-1]+")"

 #print values

 sql="insert into pH "+fields+" VALUES "+values+";"

 #print("pH sql")

 #print sql

 #

 #insert the ctd record

 #

 cur.execute(sql)

 #check for duplicates. Check if a platformPosition record with the same time and platform of the

first row exists

 #

 sql="SELECT * FROM platformPosition WHERE

platformId="+str(METEOCErecs[0]["platformId"])+" AND time='"+ METEOCErecs[0]["time"]+"';"

ERDC Task 2 4Q Deliverable

 cur.execute(sql)

 duplicate=cur.fetchall()

 if len(duplicate)>0:continue

 for rec in METEOCErecs:

 fields="("

 values="("

 if not math.isnan(rec["speed"]): #If there was a '#/NaN' in the field it was converted to a NaN.

Don't load these records

 for field in platformfields:

 value=rec[field]

 if value is None:continue

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 #print fields

 values=values[:-1]+")"

 #print values

 sql="insert into platformPosition "+fields+" VALUES "+values+";"

 #print("platform sql")

 #print sql

 #

 #insert the platformPosition record

 #

 cur.execute(sql)

 elif filename.find("_ADCP_") != -1:

 #Read the "_ADCP_" file and return a list of dictionaries (one for each row)

 #

 ADCPrecs=readADCP(filename,platforms,lat,lon)

ERDC Task 2 4Q Deliverable

 #print("ADCPrecs=")

 #print(ADCPrecs)

 #

 if(ADCPrecs==[]): continue

 #check for duplicates. Check if a pH record with the same time and platform of the first row

exists

 #

 sql="SELECT * FROM currents WHERE platformId="+str(ADCPrecs[0]["platformId"])+" AND

time='"+ ADCPrecs[0]["time"]+"';"

 cur.execute(sql)

 duplicate=cur.fetchall()

 if len(duplicate)>0:continue

 for rec in ADCPrecs:

 fields="("

 values="("

 if not math.isnan(rec["speed"]): #If there was a '#/NaN' in the field it was converted to a NaN.

Don't load these records

 for field in currentsfields:

 value=rec[field]

 if value is None:continue

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 #print fields

 values=values[:-1]+")"

 #print values

 sql="insert into currents "+fields+" VALUES "+values+";"

 #print("currents sql")

 #print sql

ERDC Task 2 4Q Deliverable

 #

 #insert the currents record

 #

 cur.execute(sql)

 elif filename.find("_TRIPLET_") != -1:

 #Read the "_TRIPLET_" file and return a list of dictionaries (one for each row)

 #

 TRIPLETrecs=readTRIPLET(filename,platforms)

 #

 #print("TRIPLETrecs=")

 #print(TRIPLETrecs)

 #

 if(TRIPLETrecs==[]): continue

 #check for duplicates. Check if a chloro record with the same time and platform of the first row

exists

 #

 sql="SELECT * FROM chlorophyll WHERE platformId="+str(TRIPLETrecs[0]["platformId"])+" AND

time='"+ TRIPLETrecs[0]["time"]+"';"

 cur.execute(sql)

 duplicate=cur.fetchall()

 if len(duplicate)>0:continue

 for rec in TRIPLETrecs:

 fields="("

 values="("

 if not math.isnan(rec["chlorophyll"]): #If there was a '#/NaN' in the field it was converted to a

NaN. Don't load these records

 for field in chlorofields:

 value=rec[field]

 if value is None:continue

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

ERDC Task 2 4Q Deliverable

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 #print fields

 values=values[:-1]+")"

 #print values

 sql="insert into chlorophyll "+fields+" VALUES "+values+";"

 #print("chlorophyll sql")

 #print sql

 #

 #insert the chlorophyll record

 #

 cur.execute(sql)

 #empty file? Skip

 #

#The argument is the path to the checkins directory (where all the .dat files are stored we use this

path to get into winch data files folder)

checkinsdir=sys.argv[1] + "/WINCH_MISSIONS"

#print("WINCH FILES PATH?")

#print checkinsdir

os.chdir(checkinsdir)

files=os.listdir(checkinsdir)

#print("files = ")

#print(files)

ERDC Task 2 4Q Deliverable

for filename in files:

 #print(filename[-4:])

 #print(filename.find("WDATA_"))

 #

 #Only process the .txt files

 #

 if filename[-4:] != ".txt":continue

 #

 #only process the "_WDATA_" files

 #

 if filename.find("WDATA_") != -1 and filename.find("LOWRES") !=-1:

 #

 #see if the platform name exists in the platform table

 #

 first_idx = filename.find("_")+1

 second_idx = first_idx + (filename[filename.find("_")+1:]).find("_")

 p=filename[first_idx:second_idx]

 #print("platform name?")

 #print(p)

 try:

 platformId=platforms[p]

 except:

 sql="INSERT INTO platform (name) VALUES ('"+p+"');"

 #print sql

 cur.execute(sql)

 con.commit()

 #

 #Read in the platform table and create a dictionary of platformIds with the platform name as

the key

 #

ERDC Task 2 4Q Deliverable

 platforms=getplatforms(cur)

 #

 #Read the "WDATA_" file and return a list of dictionaries (one for each row)

 #

 WDATA_LOWRESrecs=readWDATA_LOWRES(filename,platforms)

 #print("WDATA_LOWRESrecs=")

 #print(WDATA_LOWRESrecs)

 if (WDATA_LOWRESrecs==[]):continue

 #

 #check for duplicates. Check if a CTD record with the same time and platform of the first row

exists

 #

 sql="SELECT * FROM CTD WHERE platformId="+str(WDATA_LOWRESrecs[0]["platformId"])+"

AND time='"+WDATA_LOWRESrecs[0]["time"]+"';"

 cur.execute(sql)

 duplicate=cur.fetchall()

 if len(duplicate)>0:continue

 for rec in WDATA_LOWRESrecs:

 #

 #create the CTD insert sql command for each row

 #

 fields="("

 values="("

 if not math.isnan(rec["temperature"]): #If there was a '#/NaN' in the field it was converted to

a NaN. Don't load these records

 #

 #create the CTD insert sql command for each row

 #

 fields="("

 values="("

ERDC Task 2 4Q Deliverable

 for field in CTDfields:

 value=rec[field]

 if value is None:continue

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 #print fields

 values=values[:-1]+")"

 #print values

 sql="insert into CTD "+fields+" VALUES "+values+";"

 #print("CTD sql")

 #print sql

 cur.execute(sql)

 else:

 #

 #see if the platform name exists in the platform table

 #

 first_idx = filename.find("_")+1

 second_idx = first_idx + (filename[filename.find("_")+1:]).find("_")

 p=filename[first_idx:second_idx]

 #print("platform name?")

 #print(p)

 try:

 platformId=platforms[p]

 except:

 sql="INSERT INTO platform (name) VALUES ('"+p+"');"

 #print sql

ERDC Task 2 4Q Deliverable

 cur.execute(sql)

 con.commit()

 #

 #Read in the platform table and create a dictionary of platformIds with the platform name as

the key

 #

 platforms=getplatforms(cur)

 #

 #Read the "WDATA_" file and return a list of dictionaries (one for each row)

 #

 WDATArecs=readWDATA(filename,platforms)

 #print("WDATArecs=")

 #print(WDATArecs)

 if (WDATArecs==[]):continue

 #

 #check for duplicates. Check if a CTD record with the same time and platform of the first row

exists

 #

 sql="SELECT * FROM CTD WHERE platformId="+str(WDATArecs[0]["platformId"])+" AND

time='"+WDATArecs[0]["time"]+"';"

 cur.execute(sql)

 duplicate=cur.fetchall()

 if len(duplicate)>0:continue

 for rec in WDATArecs:

 #

 #create the CTD insert sql command for each row

 #

 fields="("

 values="("

ERDC Task 2 4Q Deliverable

 if not math.isnan(rec["temperature"]): #If there was a '#/NaN' in the field it was converted to

a NaN. Don't load these records

 #

 #create the CTD insert sql command for each row

 #

 fields="("

 values="("

 for field in CTDfields:

 value=rec[field]

 if value is None:continue

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 #print fields

 values=values[:-1]+")"

 #print values

 sql="insert into CTD "+fields+" VALUES "+values+";"

 #print("CTD sql")

 #print sql

 cur.execute(sql)

#It doesn't really happen until we do a commit

con.commit()

print "Finished"

ERDC Task 2 4Q Deliverable

Appendix C:
Iver_Loader.py

'''

Created on March 11, 2021

This is the loader program for viking Data Buoy. This program takes path to the folder where

WaveRider data files are collected, database username and password as inputs.

@author: vishwa sunkara.

Email: Vishwamithra.sunkara@usm.edu

'''

import json

import os

import sys

import mysql.connector

import math

def getplatforms(cur):

ERDC Task 2 4Q Deliverable

 #

 #Read in the platform table and create a dictionary of platformIds with the platform name as the

key

 #

 sql="SELECT * FROM platform;"

 cur.execute(sql)

 recs=cur.fetchall()

 platforms={}

 for rec in recs:

 platforms[rec[1]]=rec[0]

 return platforms

def readIVER(filename,platforms):

 #

 #Read the "*IVER*.log" file and create an array of dictionaries (one for each line or record in the

file)

 #containing only the data needed in the database tables

 #

 f=open(filename,'r')

 records=[]

 for position,line in enumerate(f):

 rec={}

 if position>0:

 fields=line.split(";")

 if not fields:continue

 rec["platformId"]=int(platforms[filename[filename.rindex("I"):len(filename)-4]])

 #print("IVER3-3072?")

 #print(filename[filename.rindex("I"):len(filename)-4])

 rec["time"]=fields[3].replace ('/','-')+" "+fields[2]

 #degmin=fields[0].split()

 lat=fields[0]#float(degmin[0])+float(degmin[1][:-1])/60. #degrees minutes to degrees

 rec["latitude"]=lat

ERDC Task 2 4Q Deliverable

 #if degmin[1][-1]=="S":lat=-lat

 #degmin=fields[1].split()

 lon=fields[1]#float(degmin[0])+float(degmin[1][:-1])/60. #degrees minutes to degrees

 #if degmin[1][-1]=="W":lon=-lon

 rec["longitude"]=lon

 rec["speed"]=float(fields[26])*0.51444444444444 # convert knots to meters/second

 rec["temperature"]=float(fields[52]) #Celsius

 rec["heading"]=float(fields[10])# compass true heading in deg

 rec["depth"]=float(fields[14])#DFS-depth from surface

 rec["altitude"]=float(fields[16])#HFB-Height from bottom

 rec["salinity"]=float(fields[55])#ppt

 rec["conductivity"]=float(fields[53])#mS/cm

 records.append(rec)

 f.close()

 return records

#This is the main program. It requires 3 arguments on the command line.

#1st argument is a directory name where the source (*IVER*.log) files reside. This program will open

all the

source files into a dictionary array (a dictionary for each row) maintaining onny the values needed

for the load.

#2nd argument is the database username needed to establish the connection.

#3rd argument is the password.

#The following line makes the database connection

con =

mysql.connector.connect(host="localhost",user=sys.argv[2],passwd=sys.argv[3],database="oceancu

be")

ERDC Task 2 4Q Deliverable

cur=con.cursor()

#Read in the platform table and create a dictionary of platformIds with the platform name as the key

platforms=getplatforms(cur)

#These are the list of fields in tables that cab be populated by IVER records.

#metfields=["time","latitude","longitude","windSpeed","windDirection","temperature","humidity","

pressure","altitude","platformId"]

#currentfields=["time","latitude","longitude","speed","direction","depth","platformId"]

#wavefields=["time","latitude","longitude","period","height","platformId"]

platformfields=["time","latitude","longitude","depth","speed","heading","platformId"]

CTDfields=["time","latitude","longitude","conductivity","temperature","salinity","depth","platformI

d"]

#The argument is the path to the checkins directory (where all the .log files are stored)

checkinsdir=sys.argv[1]

#print checkinsdir

os.chdir(checkinsdir)

files=os.listdir(checkinsdir)

for filename in files:

 #

 #Only process the .log files

 #

 if filename[-4:] != ".log":continue

 #

 #only process the "IVER log" files

 #

 if filename.find("IVER") != -1:

 #

ERDC Task 2 4Q Deliverable

 #see if the platform name exists in the platform table

 #

 p=filename[filename.rindex("I"):len(filename)-4]

 #print("IVER3-3072?")

 #print(filename[filename.rindex("I"):len(filename)-4])

 try:

 platformId=platforms[p]

 except:

 sql="INSERT INTO platform (name) VALUES ('"+p+"');"

 print sql

 cur.execute(sql)

 con.commit()

 #

 #Read in the platform table and create a dictionary of platformIds with the platform name as

the key

 #

 platforms=getplatforms(cur)

 #

 #Read the file and return a list of dictionaries (one for each row)

 #

 IVERrecs=readIVER(filename,platforms)

 #print("IVERrecs?")

 #print(IVERrecs)

 #

 #empty file? Skip

 #

 if IVERrecs==[]:continue

 #

 #check for duplicates. Check if a CTD record with the same time and platform of the first row

exists

 #

ERDC Task 2 4Q Deliverable

 sql="SELECT * FROM CTD WHERE platformId="+str(IVERrecs[0]["platformId"])+" AND

time='"+IVERrecs[0]["time"]+"';"

 cur.execute(sql)

 duplicate=cur.fetchall()

 if len(duplicate)>0:continue

 for rec in IVERrecs:

 #

 #create the CTD insert sql command for each row

 #

 fields="("

 values="("

 for field in CTDfields:

 value=rec[field]

 if value is None:continue

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 #print fields

 values=values[:-1]+")"

 #print values

 sql="insert into CTD "+fields+" VALUES "+values+";"

 #print sql

 #

 #insert the CTD record

 #

 cur.execute(sql)

 #

 #check for duplicates. Check if a platformPosition record with the same time and platform of the

first row exists

ERDC Task 2 4Q Deliverable

 #

 sql="SELECT * FROM platformPosition WHERE platformId="+str(IVERrecs[0]["platformId"])+"

AND time='"+IVERrecs[0]["time"]+"';"

 cur.execute(sql)

 duplicate=cur.fetchall()

 if len(duplicate)>0:continue

 for rec in IVERrecs:

 #

 #create the platformPosition insert sql command for each row

 #

 fields="("

 values="("

 for field in platformfields:

 value=rec[field]

 if value is None:continue

 if isinstance(value,basestring):

 values+="'"+value+"',"

 else:

 values+=str(value)+","

 fields+=field+","

 fields=fields[:-1]+")"

 #print fields

 values=values[:-1]+")"

 #print values

 sql="insert into platformPosition "+fields+" VALUES "+values+";"

 #print sql

 #

 #insert the platformPosition record

 #

 cur.execute(sql)

ERDC Task 2 4Q Deliverable

#It doesn't really happen until we do a commit

con.commit()

print "Finished"

